Notes

Advantageous Syntheses of Stilbenes via Benzotriazole-Stabilized Anions

Alan R. Katritzky,* Dmytro O. Tymoshenko, and Sergei A. Belyakov

Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida, 32611-7200

Received November 13, 1998

Introduction

Stilbenes are well-known as optical brighteners¹ and synthetic precursors of phenanthrene alkaloids² and enantiomerically pure 1,2-diphenylethane-1,2-diamines³ and diols⁴ via asymmetric dihydroxylation. The growing interest in diphenylethylene derivatives is connected with the antileukemic,⁵ carcinostatic,⁶ and protein-tyrosine kinase inhibitory⁷ activities of some synthetic as well as naturally occurring⁸ stilbenes, specifically their transisomers.

Syntheses of stilbenes from aryl aldehydes and stabilized benzyl carbanions have gained increased importance.9 Frequently, the carbanion is stabilized using octet enlargement, as by P, Si, and S heteroatoms at the α -position of the benzyl intermediate in Wittig,¹⁰ Peterson,¹¹ and Julia¹² reactions, respectively. In the wellstudied Wittig reaction, stilbenes are usually formed in moderate to high yield as a mixture of (E)- and (Z)isomers together with triphenylphosphine as a side product.⁹ Although the (E/Z)-ratio can be influenced by varying some of the reaction conditions (solvent, temperature, base, promotor, etc.),¹³⁻¹⁵ recent studies¹⁶ in-

- (1) Zweidler, R.; Heinz, H. In Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed.; Mark, H. F., Othmer, D. F., Overberger, C. G., Seaborg, G. T., Eds.; John Wiley and Sons: New York, 1978; Vol. 4, p 213.
- (2) Estevez, J. C.; Villaverde, M. C.; Estevez, R. J.; Seijas, J. A.; Castedo, L. *Can. J. Chem.* **1990**, *68*, 964.
- (3) Pini, D.; Iuliano, A.; Rosini, C.; Salvadori, P. Synthesis 1990, 11. 1023.
- (4) Tang, X.-Q.; Harvey, R. G. *Tetrahedron Lett.* 1995, *36*, 6037.
 (5) Mannila, E.; Talvitie A.; Kolehmaonen E. *Phytochemistry* 1993,
- 33. 813. (6) Ohsumi K.; Tsuji T.; Morinaga Y.; Ohishi K. Eur. Pat. Appl. EP
- 641,767; Chem. Abstr. 1995, 122, 265183f. (7) Thakkar, K.; Geahlen, R. L.; Cushman, M. J. Med. Chem. 1993,
- 36. 2950. (8) Si, J. Tianran Chanwu Yanjiu Yu Kaifa 1994, 6, 71; Chem. Abstr.
- 1995, 122, 213785j.
- (9) Becker, K. B. Synthesis 1983, 5, 341.
- (10) Maguire, A. B. Synthesis 1960, 5, 541.
 (10) Maguire, A. R. In Comprehensive Organic Functional Group Transformations, Katritzky, A. R., Meth-Cohn, O., Rees, C. W., Eds.; Pergamon Press: New York, 1995; Vol. 1, p 589.
 (11) Gosney, I.; Lloyd, D. In Comprehensive Organic Functional Group Transformations, Katritzky, A. R., Meth-Cohn, O., Rees, C. W., Eds.: Pergamon Press: New York, 1995; Vol. 1, p 719.
- Eds.; Pergamon Press: New York, 1995; Vol. 1, p 719.
 (12) Kelly, S. E. In *Comprehensive Organic Synthesis*, Trost, B. M., Ed.; Pergamon Press: New York, 1991; Vol. 1, p 729.
 (13) Drefahl, G.; Lorenz, D.; Schnitt, G. *J. Prakt. Chem.* **1964**, *23*,
- 143.
- (14) Bottin-Strzalko, T.; Seyden-Penne, J.; Tchoubar, B. C. R. Acad.
 Sci., Ser. C 1971, C272, 778; Chem. Abstr. 1971, 74, 111466d.
 (15) Johnson, A. W.; Kyllingstad, V. L. J. Org. Chem. 1966, 31, 334.

dicate that the (E/Z)-ratio is not affected by changes in concentration, mode of addition, or molar ratio of aldehyde to ylide, and only to a minor extent by the substitution in the aldehyde and aralkylidene-triphenylphosphorane precursors. Peterson olefinations require multistep syntheses of starting arylmethylsilanes, and for stilbenes show low stereoselectivity.¹⁷ Stabilization of the anion by an arylsulfonyl group in Julia olefinations affords high yields of 1,2-diphenyl-2-(phenylsulfonyl)-1ethanol intermediates, but high stereoselectivity was demonstrated only for aliphatic derivatives.^{18,19} Our recently reported^{20a,b} addition of benzotriazole-stabilized anions to carbonyl compounds and subsequent in situ low-valent titanium dehydroxybenzotriazolylation of the intermediate diastereoisomeric N-(B-hvdroxvalkvl)benzotriazoles gives predominantly trans-alkenes, -dienes, and -trienes.^{20b}

The use of an aldehyde as its enamine derivative can limit possible side reactions, give higher yields, and form selectively E-stilbenes.⁹ An alternative is the use of arylsulfonylhydrazones,²¹ in a process similar to the Shapiro reaction,²² and we recently²³ demonstrated the utility of α -(1-benzotriazolyl)ketone hydrazones 1 for the preparation of alkynes 3 via dianion 2 (Scheme 1, Bt =1-benzotriazolyl) by a Shapiro-like reaction.^{22,24}

Results and Discussion

We have now found that reactions of benzotriazole derivatives 4 with tosylhydrazones of carbonyl compounds 5 in the presence of strong base provide a smooth entry to *E*-stilbenes (Scheme 2, Table 1). The suggested mechanism of this reaction (Scheme 2) involves the

- (16) Yamataka, H.; Nagareda, K.; Ando, K.; Hanafusa, T. J. Org. Chem. 1992, 57, 2865.
- (17) Peterson, D. J. J. Org. Chem. 1968, 33, 780
- (18) Baudin, J. B.; Hareau, G.; Julia, S. A.; Ruel, O. Bull. Soc. Chim. Fr. 1993, 130, 336.
- (19) Baudin, J. B.; Hareau, G.; Julia, S. A.; Lorne, R.; Ruel, O. Bull. Soc. Chim. Fr. 1993, 130, 856.

- (21) Vedejs, E.; Dolphin, J. M.; Stolle, W. T. J. Am. Chem. Soc. 1979, 101. 249.
- (22) Shapiro, R. H. Tetrahedron Lett. 1968, 345.
- (23) Katritzky, A. R.; Wang, J.; Karodia, N.; Li, J. J. Org. Chem. 1997. 62. 4142.
- (24) Shapiro, R. H.; Heath, M. J. J. Am. Chem. Soc. 1967, 89, 5734.

^{(20) (}a) Katritzky, A. R.; Li, J. *J. Org. Chem.* **1997**, *62*, 238. (b) Katritzky, A. R.; Cheng, D.; Henderson, S. A.; Li, J. *J. Org. Chem.* **1998**. 63. 6704.

 Table 1. Syntheses of E-Stilbenes 10 via

 Benzotriazole-Stabilized Anions

Ar^1	Ar^2	meth- od	base	<i>E/Z</i> ratio	yield, ^a %
Ph	Ph	А	BuLi	92/8	57
Ph	p-CH ₃ C ₆ H ₄	Α	BuLi	90/10	48
Ph	p-CH ₃ OC ₆ H ₄	Α	BuLi	99/1	53
p-ClC ₆ H ₄	Ph	А	BuLi	98/2	61
$p-CH_3C_6H_4$	Ph	А	BuLi	_	traces
p-CH ₃ C ₆ H ₄	Ph	Α	LDA	_	traces
p-CH ₃ C ₆ H ₄	Ph	В	LDA	93/7	65
Ph	Ph	В	LDA	99/1	84
Ph	p-CH ₃ C ₆ H ₄	В	LDA	95/5	79
p-ClC ₆ H ₄	p-CH ₃ OC ₆ H ₄	В	LDA	100/0	73
p-CH ₃ C ₆ H ₄	p-CH ₃ OC ₆ H ₄	В	LDA	94/6	69
Ph	$p-ClC_6H_4$	В	LDA	100/0	81
$p-CH_3C_6H_4$	p-CH ₃ C ₆ H ₄	В	LDA	100/0	64
Ph	3,4,5-(CH ₃ O) ₃ C ₆ H ₂	В	LDA	99/1	68
	Ar ¹ Ph Ph <i>p</i> -ClC ₆ H ₄ <i>p</i> -CH ₃ C ₆ H ₄ <i>p</i> -CH ₃ C ₆ H ₄ Ph Ph <i>p</i> -ClC ₆ H ₄ <i>p</i> -CH ₃ C ₆ H ₄ Ph <i>p</i> -CH ₃ C ₆ H ₄ Ph	$\begin{array}{ccc} Ar^1 & Ar^2 \\ \\ Ph & Ph \\ Ph & p \cdot CH_3C_6H_4 \\ Ph & p \cdot CH_3OC_6H_4 \\ Ph & p \cdot CH_3C_6H_4 & Ph \\ Ph & Ph \\ Ph & p \cdot CH_3C_6H_4 \\ p \cdot CH_3C_6H_4 & p \cdot CH_3OC_6H_4 \\ p \cdot CH_3C_6H_4 & p \cdot CH_3OC_6H_4 \\ Ph & p \cdot CH_3C_6H_4 \\ Ph & p \cdot CH_3C_6H_4 \\ Ph & 3,4,5 \cdot (CH_3O)_3C_6H_2 \\ \end{array}$	$\begin{array}{c c} & \mbox{meth-}\\ Ar^1 & Ar^2 & \mbox{od}\\ \end{array} \\ Ph & Ph & A \\ Ph & p\-CH_3C_6H_4 & A \\ Ph & p\-CH_3C_6H_4 & Ph & A \\ p\-CH_3C_6H_4 & Ph & A \\ p\-CH_3C_6H_4 & Ph & A \\ p\-CH_3C_6H_4 & Ph & B \\ Ph & Ph & B \\ Ph & Ph & B \\ Ph & p\-CH_3C_6H_4 & B \\ p\-CH_3C_6H_4 & p\-CH_3C_6H_4 & B \\ p\-CH_3C_6H_4 & p\-CH_3C_6H_4 & B \\ Ph & q\-CH_3C_6H_4 & B $	$\begin{array}{c c c c c c } & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c c c c c c } & meth- & E/Z \\ \hline Ar^1 & Ar^2 & od & bas & ratio \\ \hline Ph & Ph & A & BuLi & 92/8 \\ Ph & p-CH_3C_6H_4 & A & BuLi & 90/10 \\ Ph & p-CH_3C_6H_4 & A & BuLi & 99/1 \\ p-ClC_6H_4 & Ph & A & BuLi & 98/2 \\ p-CH_3C_6H_4 & Ph & A & BuLi & -1 \\ p-CH_3C_6H_4 & Ph & A & BULi & -1 \\ p-CH_3C_6H_4 & Ph & A & BULi & -1 \\ p-CH_3C_6H_4 & Ph & A & BULi & -1 \\ P-CH_3C_6H_4 & Ph & B & LDA & 93/7 \\ Ph & Ph & B & LDA & 99/1 \\ Ph & p-CH_3C_6H_4 & B & LDA & 99/1 \\ Ph & p-CH_3C_6H_4 & B & LDA & 90/1 \\ p-CH_3C_6H_4 & p-CH_3OC_6H_4 & B & LDA & 94/6 \\ Ph & p-ClC_6H_4 & B & LDA & 94/6 \\ Ph & p-CH_3C_6H_4 & B & LDA & 100/0 \\ p-CH_3C_6H_4 & p-CH_3C_6H_4 & B & LDA & 100/0 \\ p-CH_3C_6H_4 & p-CH_3C_6H_4 & B & LDA & 100/0 \\ Ph & 3,4,5-(CH_3O)_3C_6H_2 & B & LDA & 99/1 \\ \end{array}$

^{*a*} Isolated yield of pure *E*-isomer.

addition²⁵ of an anion **6** to tosylhydrazone anion **7** with the formation of dianion **8**. Loss of TsLi, nitrogen, and benzotriazole anion leads to the expected olefins **10** via **9**. This pathway is similar to our previous preparation of alkynes,²³ but reflects the lower bond order of the newly formed C-C bonds in the intermediates.

Preparation of Starting Materials. Compounds 4a-d were synthesized by reactions of benzotriazole with the corresponding benzyl chloride,²⁶ and 5a-e as previously reported.²⁷

Preparation of Stilbenes. Deprotonation of compounds $4\mathbf{a}-\mathbf{d}$ with *n*-butyllithium (BuLi) or lithium diisopropylamide (LDA) gave dark-green solutions of the corresponding anions, which underwent nucleophilic addition to the tosylhydrazones $5\mathbf{a}-\mathbf{e}$ to form the corresponding stilbenes 10, with disappearance of the green color. While it is convenient to employ a one-pot procedure (method A: i.e. treatment of a solution of tosylhydrazone and *N*-benzylbenzotriazole in THF with BuLi or LDA), the best results were obtained when anion **6** was

formed separately and then added by cannula to a solution of preformed N-lithio tosylhydrazone 7 (method B). This procedure, and the use of LDA instead of BuLi, minimizes side reactions of tosylhydrazone²⁵ and improves yields of the stilbenes (Table 1). In all cases only the E-stilbene was isolated after recrystallization or chromatography. According to GCMS analysis of the crude reaction mixture, the E/Z-ratio was greater then 10:1. Similar alkene formation via the reaction of tosylhydrazone anions with α -lithio sulfides, sulfones, thioacetals, hemithioacetals, and nitriles²¹ shows E:Z ratios in the range of 2:1 to 1:2, although the *E*-isomer was formed predominantly from β -methylstyrene. The high stereoselectivity of our novel olefination probably is connected to the formation of intermediates 11 and 12 in which the lithium is chelated by the neighboring nitrogen of the benzotriazole substituent (Scheme 3). This greater stabilization of the intermediate by a benzotriazolyl group, as compared to a phenylthio or alkylsulfinyl group and the strain in syn intermediate 11 being larger than in 12 makes the formation of the anti isomer more favorable. Further loss of nitrogen leads to the predominant formation of the less-strained anion 14, which yields *E*-stilbene as the major product.

Conclusion

Convenient and stereospecific stilbene syntheses starting from tosylhydrazones of benzaldehydes with substituted *N*-benzylbenzotriazoles are described. This one-step method, which includes a Shapiro-type transformation, offers good stereoselectivity with predominant formation of *E*-isomers and compares favorably with the Wittig, Peterson, and Julia reactions. It provides an alternative to the recently described^{20a,b} McMurry type dehydroxybenzotriazolylation route to olefins.

Experimental Section

Melting points were determined on a hot stage apparatus without correction. ¹H and ¹³C NMR spectra were obtained on a 300 MHz spectrometer (300 and 75 MHz respectively) in chloroform-d.

THF and DME were distilled under nitrogen immediately prior to use from a purple solution containing benzophenone/ sodium. Column chromatography was carried out on MCB silica

⁽²⁵⁾ Vedejs, E.; Stolle, W. T. Tetrahedron Lett. 1977, 18, 135.

 ⁽²⁶⁾ Katrizky, A. R.; Toader, D. J. Am. Chem. Soc. 1997, 119, 9321.
 (27) Bamford, W. R.; Stevens, T. S. J. Chem. Soc. 1952, 4735.

gel (230–400 mesh). Other chemicals were used as obtained from commercial sources. Reactions were routinely carried out under nitrogen atmosphere with magnetic stirring.

General Synthetic Procedure. Method A. Compounds **4a**–**d** (2 mmol) and **5a**–**e** (2 mmol) were dissolved in THF (30 mL) in a reaction flask under nitrogen and cooled to -78 °C. BuLi (2.85 mL, 1.4 M, 4 mmol) or LDA (2.7 mL, 1.5 M, 4 mmol) was added in one portion. The dark-colored solution was stirred for 12 h while the temperature was raised to 20 °C. The mixture was quenched with water. Hexanes (50 mL) were added, and the organic phase was separated, washed with 10% Na₂CO₃ (2 × 50 mL) and water (50 mL), and then dried (Mg₂SO₄ anhydrous). Concentration under reduced pressure followed by silica gel column chromatography with hexanes/ethyl acetate (4:1) as the eluent gave stilbenes **10**.

Method B. Compounds **5a**-**d** (2 mmol) were dissolved in THF (30 mL) in a reaction flask under nitrogen and cooled to -78 °C. BuLi (2.85 mL, 1.4 M, 4 mmol) or LDA (2.7 mL, 1.5 M, 4 mmol) was added in one portion (solution 1). Separately, a solution of **4a**-**e** (2 mmol) in 20 mL of THF at -78 °C under nitrogen was treated with BuLi (2.85 mL, 1.4 M, 4 mmol) or LDA (2.7 mL, 1.5 M, 4 mmol) (solution 2). Solution 2 was added dropwise to solution 1 by cannula, and the mixture was stirred for another 12 h while the temperature was allowed to rise to 20 °C. A workup and isolation procedure similar to that in method A gave stilbenes **10**.

Supporting Information Available: ¹H and ¹³C spectral data of stilbenes **10**. This material is available free of charge via the Internet at http://pubs.acs.org.

JO982262D